A. R is the midpoint of both \overline{PT} and \overline{QS} . **B.** $\overline{AE} \cong \overline{CB}$, $\overline{AB} \cong \overline{CD}$, and B is the midpoint of \overline{ED} . $\overline{\mathbf{C}}$. $\overline{AB} \perp \overline{BE}$ and $\overline{DE} \perp \overline{BE}$, $\overline{AB} \cong \overline{DE}$, and $\langle BAC \cong \langle EDC \rangle$. **D.** <GKM \cong <LMK and <GMK \cong <LKM. **E.** $\overline{RQ} \cong \overline{SP}$, and X is the midpoint of both \overline{QS} and \overline{RP} . F. \overline{TQ} bisects <PTS and $\overline{TQ} \perp \overline{PS}$. **G.** $A \cong S$ and \overline{RT} bisects ARS. **H.** $\overline{GL} \perp \overline{KM}$ and $\overline{GK} \cong \overline{GM}$. I. $\langle B \cong \langle Z, X \text{ is the midpoint of } \overline{AY}, \text{ and } \langle 1 \text{ and } \langle 2 \text{ are right angles.} \rangle$ **J.** $\overline{QM} \cong \overline{KD}$ and $\overline{MH} \cong \overline{DH}$, and H is the midpoint of \overline{QK} . **K.** T is the midpoint of \overline{RS} and $A \cong P$ $L \overline{SX} \cong \overline{RX}$ and \overline{XT} bisects $\leq SXR$. M. $\overline{FT} \cong \overline{FR}$ and $\overline{FS} \perp \overline{TR}$ **N.** Given: $\overline{UV} \cong \overline{WV}$, $\overline{UX} \cong \overline{WX}$ $\mathsf{Prove} \colon \angle U \cong \angle W$ **O. Given**: $FJ \cong GH$, $\angle JFH \cong \angle GHF$ **Prove**: $FG \cong JH$ **P.** Given: $QK \cong QA$, QB bisects $\angle KQA$ **Prove**: $KB \cong AB$ **Q**. E Given: $\angle E \cong \angle P$ K is the midpoint of \overline{EP} Prove: $\overline{EG} \cong \overline{MP}$ K Given: C bisects \overline{AE} S ∠B and ∠D are right angles $\angle A \cong \angle E$ Prove: $\overline{BC} \cong \overline{DC}$ **T.** Given: $\overline{AC} \perp \overline{BD}$ $\overline{AD} \cong \overline{CD}$ Prove: $\overline{AB} \cong \overline{BC}$ **U.** Given: $MN \cong MP$, $MP \perp PO$, $MN \perp NO$ **Prove**: $\angle NOM \cong \angle POM$ **V.** Given: $\angle BCA \cong \angle DCE$ $\angle B$ and $\angle D$ are right angles C is the midpoint of \overline{BD} Prove: $\overline{BA} \cong \overline{DE}$ $\overline{\mathbf{W}}$. Given: $\overline{\mathbf{AC}} \cong \overline{\mathbf{EC}}$ C bisec ts \overline{BD} Prove: $\overline{AB} \cong \overline{ED}$