A. R is the midpoint of both \overline{PT} and \overline{QS} .

B. $\overline{AE} \cong \overline{CB}$, $\overline{AB} \cong \overline{CD}$, and B is the midpoint of \overline{ED} .

 $\overline{\mathbf{C}}$. $\overline{AB} \perp \overline{BE}$ and $\overline{DE} \perp \overline{BE}$, $\overline{AB} \cong \overline{DE}$, and $\langle BAC \cong \langle EDC \rangle$.

D. <GKM \cong <LMK and <GMK \cong <LKM.

E. $\overline{RQ} \cong \overline{SP}$, and X is the midpoint of both \overline{QS} and \overline{RP} .

F. \overline{TQ} bisects <PTS and $\overline{TQ} \perp \overline{PS}$.

G. $A \cong S$ and \overline{RT} bisects ARS.

H. $\overline{GL} \perp \overline{KM}$ and $\overline{GK} \cong \overline{GM}$.

I. $\langle B \cong \langle Z, X \text{ is the midpoint of } \overline{AY}, \text{ and } \langle 1 \text{ and } \langle 2 \text{ are right angles.} \rangle$

J. $\overline{QM} \cong \overline{KD}$ and $\overline{MH} \cong \overline{DH}$, and H is the midpoint of \overline{QK} .

K. T is the midpoint of \overline{RS} and $A \cong P$

 $L \overline{SX} \cong \overline{RX}$ and \overline{XT} bisects $\leq SXR$.

M. $\overline{FT} \cong \overline{FR}$ and $\overline{FS} \perp \overline{TR}$

N. Given: $\overline{UV} \cong \overline{WV}$, $\overline{UX} \cong \overline{WX}$

 $\mathsf{Prove} \colon \angle U \cong \angle W$

O. Given: $FJ \cong GH$, $\angle JFH \cong \angle GHF$

Prove: $FG \cong JH$

P. Given: $QK \cong QA$, QB bisects $\angle KQA$

Prove: $KB \cong AB$

Q. E

Given: $\angle E \cong \angle P$

K is the midpoint of \overline{EP}

Prove: $\overline{EG} \cong \overline{MP}$

K

Given: C bisects \overline{AE} S

∠B and ∠D are right angles

 $\angle A \cong \angle E$

Prove: $\overline{BC} \cong \overline{DC}$

T. Given: $\overline{AC} \perp \overline{BD}$ $\overline{AD} \cong \overline{CD}$

Prove: $\overline{AB} \cong \overline{BC}$

U. Given: $MN \cong MP$, $MP \perp PO$, $MN \perp NO$

Prove: $\angle NOM \cong \angle POM$

V. Given: $\angle BCA \cong \angle DCE$

 $\angle B$ and $\angle D$ are right angles C is the midpoint of \overline{BD}

Prove: $\overline{BA} \cong \overline{DE}$

 $\overline{\mathbf{W}}$. Given: $\overline{\mathbf{AC}} \cong \overline{\mathbf{EC}}$

C bisec ts \overline{BD}

Prove: $\overline{AB} \cong \overline{ED}$

